If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-14=32
We move all terms to the left:
x^2-14-(32)=0
We add all the numbers together, and all the variables
x^2-46=0
a = 1; b = 0; c = -46;
Δ = b2-4ac
Δ = 02-4·1·(-46)
Δ = 184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{184}=\sqrt{4*46}=\sqrt{4}*\sqrt{46}=2\sqrt{46}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{46}}{2*1}=\frac{0-2\sqrt{46}}{2} =-\frac{2\sqrt{46}}{2} =-\sqrt{46} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{46}}{2*1}=\frac{0+2\sqrt{46}}{2} =\frac{2\sqrt{46}}{2} =\sqrt{46} $
| (2z+5)(z+1)=-1 | | 5^3x-1=3^2x+1 | | 3+50/s=28 | | x^2+15x-70=0 | | 1/2x-6=60 | | -40x+28=-42x-36 | | y/10.44-2.9=-4.422 | | -38x+21=12-8x^2 | | 4(n-10)=34 | | 4n+15+3n+25=180 | | 6(y+3)=24+ | | -4(10x+7)=-6(7x-6) | | 1/2(b+14)=b/2+7 | | p-1.5-p-2=1 | | c/7+5=-3 | | 7x+60=x^2 | | x-2/5+x=2 | | -5x+12=142 | | (x-2)/5+x=5 | | x-2/5+x=5 | | 5/2x+4=6x+4 | | 24x+25-x=49 | | 37/64x=12 | | 6x+13+2x+10=87 | | (7x+2)(-3x+1)=0 | | x/2+3x/6=1 | | 5x-2=8x=6 | | 3x(5+38)=-(5-9) | | 3x-6/5=2x+4 | | 1/2-x+1/2x^2=0 | | 10x-4(5x)=7x(6x) | | (4+8x)=3(2X+-5) |